Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Adv Sci (Weinh) ; 9(2): e2103240, 2022 01.
Article in English | MEDLINE | ID: covidwho-1508603

ABSTRACT

The outbreak of 2019 coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in a global pandemic. Despite intensive research, the current treatment options show limited curative efficacies. Here the authors report a strategy incorporating neutralizing antibodies conjugated to the surface of a photothermal nanoparticle (NP) to capture and inactivate SARS-CoV-2. The NP is comprised of a semiconducting polymer core and a biocompatible polyethylene glycol surface decorated with high-affinity neutralizing antibodies. The multifunctional NP efficiently captures SARS-CoV-2 pseudovirions and completely blocks viral infection to host cells in vitro through the surface neutralizing antibodies. In addition to virus capture and blocking function, the NP also possesses photothermal function to generate heat following irradiation for inactivation of virus. Importantly, the NPs described herein significantly outperform neutralizing antibodies at treating authentic SARS-CoV-2 infection in vivo. This multifunctional NP provides a flexible platform that can be readily adapted to other SARS-CoV-2 antibodies and extended to novel therapeutic proteins, thus it is expected to provide a broad range of protection against original SARS-CoV-2 and its variants.


Subject(s)
Antibodies, Neutralizing/administration & dosage , Antibodies, Viral/administration & dosage , COVID-19/therapy , Immunoconjugates/administration & dosage , Nanoparticles , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/physiology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/immunology , Antigen-Antibody Reactions , COVID-19/immunology , COVID-19/virology , Drug Evaluation, Preclinical , Hot Temperature , Humans , Immunoconjugates/immunology , Immunoconjugates/therapeutic use , Light , Mice , Nanoparticles/therapeutic use , Phosphatidylethanolamines , Polyethylene Glycols , Polymers , Receptors, Virus/physiology , Semiconductors , Spike Glycoprotein, Coronavirus/immunology , Thiadiazoles , Virus Inactivation
2.
bioRxiv ; 2020 Nov 30.
Article in English | MEDLINE | ID: covidwho-955698

ABSTRACT

The outbreak of 2019 coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in a global pandemic. Despite intensive research including several clinical trials, currently there are no completely safe or effective therapeutics to cure the disease. Here we report a strategy incorporating neutralizing antibodies conjugated on the surface of a photothermal nanoparticle to actively capture and inactivate SARS-CoV-2. The photothermal nanoparticle is comprised of a semiconducting polymer core and a biocompatible polyethylene glycol surface decorated with neutralizing antibodies. Such nanoparticles displayed efficient capture of SARS-CoV-2 pseudoviruses, excellent photothermal effect, and complete inhibition of viral entry into ACE2-expressing host cells via simultaneous blocking and inactivating of the virus. This photothermal nanoparticle is a flexible platform that can be readily adapted to other SARS-CoV-2 antibodies and extended to novel therapeutic proteins, thus providing a broad range of protection against multiple strains of SARS-CoV-2.

SELECTION OF CITATIONS
SEARCH DETAIL